
Published by the IEEE Computer Society	 0272-1716/12/$31.00 © 2012 IEEE	 IEEE Computer Graphics and Applications� 81

Education Editors: Gitta Domik  
and Scott Owen

Teaching 3D Computer Animation to 
Illustrators: The Instructor as Translator and 
Technical Director
Wobbe F. Koning
Montclair State University

Illustrators are not necessarily technically chal-
lenged, but teaching them to use technology 
can be a challenge. I teach 3D computer ani-

mation to bachelor-of-fine-arts students majoring 
in animation and illustration. Only a few of them 
aspire to become professional 3D animators; most 
of them prefer drawing with pencil and paper to 
moving vertices and faces around with a mouse 
or tablet pen.

My courses function as studio art classes, not 
software training exercises. The goal is to teach 
the principles behind the technology rather than 
button pushing. If students only learn to achieve 
specific results by clicking on the proper icons, they 
do not develop the most important skill needed to 
creatively use the technology—problem solving.

There are two primary areas in which my stu-
dents’ lack of a technical background complicates 
instruction of 3D computer animation, even as a 
studio art class. The first is the concepts and ter-
minology needed to effectively communicate about 
3D computer animation’s technical side. These 
concepts and terms are alien to my students; their 
meaning eludes the students, and the words do 
not seem to want to stick. The second area is the 
software’s complexity. Students are often discour-
aged by the steep learning curve and get lost in the 
plethora of tools, options, and settings.

Terminology
When I ask advanced animation students what a 
normal is, they might answer, “the little line stick-
ing out of a polygon,” remembering the visual I 
showed them in one of the beginning courses. If 
I ask what that line signifies, I often get a blank 
stare. I frequently encounter other similar discon-
nects. Students seem responsive when I refer to 

the tangent of a curve as the curve manipulation 
handle they use in a vector-based image creation 
program such as Adobe Illustrator, and they under-
stand that it shapes the curve. But because they are 
not familiar with reading graphs, they do not seem 
to make the connection that the slope of the tan-
gent indicates the rate of parameter change in an 
animation curve editor. In the previous sentence, I 
would probably lose them at “slope of the tangent.”

I have not found a satisfactory solution for this 
issue. I do not subscribe to a contextualistic world-
view1 or consider myself a constructivist in that 
sense. However, teaching technology in context 
does appeal to me as a way to engage students.2 I 
do not go as far as to focus the curriculum around 
topics that are close to the students’ reality and 
interests, but I do try to provide context—for in-
stance, by showing popular or successful anima-
tions that put the covered concepts to good use. 
When creating assignments, I try to relate them to 
the reality of work in an actual studio. Luckily, art 
classes usually have an intrinsic context.3 In my 
classes, student projects involve creating virtual 
objects and eventually entire animations based on 
the students’ own design and story ideas. However, 
to stimulate their creative process, I find it effec-
tive to sometimes show something far removed 
from their reality and interests—for instance, to 
broaden their horizon with a piece of abstract pro-
cedural animation.

Students’ fear of mathematics still amazes me, 
and the term “mathematics” seems to encompass 
anything having to do with numbers. Creating 3D 
computer animation involves many numbers; they 
cannot be avoided. Because even basic concepts 
such as a vector or tangent still have to find a way 
into the students’ vocabulary, I have much ground 



82	 September/October 2012

Education

to cover before I can introduce something such as 
a shading algorithm. Translating computer graph-
ics language into plain English is not something I 
have been trained to do, but being aware that it is 
one of my tasks as an instructor helps me prepare 
my lectures. A complicating factor is that, after 
covering a 3D animation concept, I often have to 
explain that although what I just laid out is true 
in theory, the implementation in the software we 
use is slightly or even radically different.

Software Complexity
We use the de facto (industry) standard software 
Autodesk Maya, which is not known for having a 
user-friendly interface. In several instances, Maya’s 
use of terminology makes sense in the light of com-
puter graphics history but is unclear and confusing 
for people new to the field. Unfortunately, the lat-
ter is probably the case with all similar software. 
However, I do not want to gear the way I cover the 
concepts to any specific software package. Software 

comes and goes, while the underlying theory re-
mains relatively constant. It would be helpful if a 
textbook were available that covers the theory in a 
software-independent and concise, clear, and con-
sistent way, without being bone dry. If you know of 
such a book, I would love to hear from you!

To address the software’s complexity, I have been 
giving my students tools that can simplify certain 
tasks, taking some of the more technical work out 
of their hands so that they can focus on the creative 
process. Taken to the extreme, I would basically 
work as technical director on the students’ projects.

One of the more complex aspects of 3D com-
puter animation is rigging—the technical setup 
required to animate a 3D model. When you are 
teaching animation to nontechnical students, it 
might make sense to skip rigging altogether and 
have them animate with existing, fully rigged 
models. Although I do assign such exercises, lim-
iting the scope of animation to that would not 
satisfy my students. They want to breathe life into 
models of their own design. This makes sense be-
cause they, being illustrators and thus good drafts-
man, are more likely to end up working on the 
design, concept art, and storyboard side of ani-
mation rather than doing the actual animation. 
They want to show off their own characters in mo-
tion. So, eliminating rigging is not an option. Un-
fortunately, rigging gets very complex very quickly 
(inverse-kinematics solvers, weight painting, ani-
mation controllers, and so on).

In spring 2011 I supplied my animation students 
with a script that can generate a complete rig for 
their characters with minimal user intervention—
that is, an automated-rigging script. All the stu-
dents must do is position all the placeholders for 
the joints. The script then generates the skeletal 
structure and sets up the appropriate inverse ki-
nematics and the associated animation controls.

Because this was an experiment, I relied on freely 
available tools. After testing several of them, I found 
that Rapid Rig: Basic best suited my needs. (Rapid 
Rig: Basic is available at www.creativecrash.com/
maya/downloads/scripts-plugins/animation/c/ 
-rapid-rig-basic-for-maya--2.) A major reason for 
choosing this script was that it generates a rig with 
all the features the students normally need, set up 
in a manner not too complex for them to under-
stand. So, they can perform minor modifications.

The results have been mixed but encouraging. 
(For two successful examples, see Figures 1 and 2.) 
Unfortunately, this script is geared toward human 
anatomy and supports only bipedal characters. 
Students who created stories about cats, dragons, 
or fish still had to build their rigs from the ground 

Figure 1. Teaching 3D to artists might be as hard as teaching a caveman 
to skate. Undergraduate student Brian Kapp designed this character and 
animated it using the supplied automated-rigging script.

Figure 2. Even though this floating death character has no legs, 
advanced animation student Melanie Farnsworth animated it by 
modifying a script-created rig.



	 IEEE Computer Graphics and Applications� 83

up. Most students whose stories involved bipeds 
used the script, even if their character was just 
a stick figure or did not quite have human pro-
portions. The resulting animations had a level of 
refinement that would have been harder to achieve 
with a rig they built themselves, which would have 
been far more basic. For example, one important 
functionality in the script-generated rig is foot 
and toe roll. This functionality enables students 
to more easily give characters a proper foot roll 
while maintaining floor contact.

What Rapid Rig (and most other) automatic-
rigging tools does not provide is a perfect “bind.” 
Defining the relation between the skeleton and the 
skin the rig needs to deform—a process called weight 
painting—unfortunately remains primarily a manual 
exercise. For instance, if your character is a muscu-
lar caveman (as in Figure 1), weight painting can 
be quite involved and extremely cumbersome. Better 
weight-painting tools are next on my list of what I 
would like to offer my students, although I am not 
aware of any available (fully) automated tools.

Because I have not yet found the perfect tool, 
I have considered writing one myself or updating 
and expanding on an existing script. Developing 
within a fully open source environment such as 
Blender (www.blender.org) probably makes the 
most sense in an academic environment. How-
ever, as long as students (and even their parents) 
strongly believe that knowledge of Maya is es-
sential to get a job in the industry, switching to 
free and open source software will be a hard sell, 
even though it would be good for our budget. In a 
closed-source environment, I am hesitant to invest 
much time in tool development.

One implication of the approach I just outlined 
is a shift in my role from instructor to facilitator. 
Taking some of the technical aspects out of the 
students’ hands means I must do more research 
to find the right tools and make sure they work 
in the current lab configuration. It does, however, 
fit my aim of providing students a work environ-
ment that somewhat resembles that of an actual 
animation studio—something that, hopefully, they 
can relate to.

What would really help me reach that goal is 
actually not something technical. Finding a way to 
have all students work on a group project or group 
projects would be to their advantage. I have had 
some success with this during my chairmanship of 
our local animation festival MetroCAF (the New 
York City Metropolitan Area College Computer 
Animation Festival). Students had the clear goal 
of creating the opening animation for the show, 
and it worked out well. But that is a different story.

Overall, the experience of offering the script to 
students was quite positive, and I continue 

to provide this tool. An increasing number of stu-
dents have been taking advantage of it. Because 
using automated-rigging tools continues to prove 
useful for my classes, I might consider purchasing 
more advanced tools in the future. However, even 
when provided with the perfect rigging tools, stu-
dents still must understand the concept and prac-
tice of rigging to solve problems that might arise 
during animation, to figure out why something 
did not work as expected or completely stopped 
working when the rig broke.

Of course, I could again play the technical direc-
tor who magically fixes things. However, because 
students tend to complete assignments the night 
before the deadline, I probably will not be available 
when they need help the most. So, the extra tools do 
not render obsolete the teaching of the general con-
cepts and their implementation, but they can help 
students achieve higher-quality animation.�

References
	 1.	 E. Fox, “Contextualistic Perspectives,” Handbook of 

Research for Educational Communication on Technology, 
3rd ed., J.M. Spector et al., eds., Lawrence Erlbaum, 
2007, pp. 56–66.

	 2.	 S. Cooper and S. Cunningham, “Teaching Computer 
Science in Context,” ACM Inroads, vol. 1, no. 1, 
2010, pp. 5–8.

	 3.	 C. Case and S. Cunningham, “Teaching Computer 
Graphics in Context: Computer Graphics Education 
09 Workshop,” 2009; http://education.siggraph.org/
media/reports/CGE09-Workshop-Report.pdf.

Wobbe F. Koning is an assistant professor of art and de-
sign at Montclair State University. Contact him at koningw@
mail.montclair.edu.

Contact department editors Gitta Domik at domik@
uni-paderborn.de and Scott Owen at sowen@gsu.edu.

Selected CS articles and columns are also available 

for free at http://ComputingNow.computer.org.

Even when provided with the perfect rigging 
tools, students still must understand the 
concept and practice of rigging to solve 
problems that might arise during animation


